Carrier risk status changes resulting from mutation testing in hereditary non-polyposis colorectal cancer and hereditary breast-ovarian cancer.
نویسندگان
چکیده
CONTEXT In hereditary cancer syndrome families with an identified cancer associated mutation, mutation testing changes the carrier risk status of the tested person and may change the carrier risk status of relatives. OBJECTIVE This study aimed to describe the change in the distribution of carrier risk status resulting from testing in hereditary breast-ovarian cancer (HBOC) and hereditary non-polyposis colorectal cancer (HNPCC) families. DESIGN This was an observational cohort study. PATIENTS The cohort included members of 75 HBOC and 47 HNPCC families. Of the 10 910 cohort members, 1408 were tested for a mutation and learned their test results. OUTCOME MEASURE Carrier risk for all cohort members was assessed before and after mutation testing. RESULTS There was a change in carrier risk status in 2906 subjects after testing of 1408 family members. The most common type of carrier risk change, from at risk to non-carrier status, accounted for 77% of the risk changes; 12% were a change to known carrier status from a lower risk. Sixty percent of persons with a carrier risk status change were not themselves tested; their risk status changed because of a relative's test result. CONCLUSIONS Carrier risk status changes from uncertainty to certainty (that is, to carrier or to non-carrier) account for 89% of risk changes resulting from testing. These risk changes affect cancer prevention recommendations, most commonly reducing their burden. Current practices do not ensure that untested family members are informed about changes in their carrier risk status which result from mutation testing of their relatives.
منابع مشابه
سه موتاسیون ژرم لاین جدید در ژن MLH1 در بیماران مبتلا به سرطان کولورکتال ارثی
Abstract Background: Hereditary non-polyposis colorectal cancer is the most common cause of early onset of hereditary colorectal cancer. In the majority of Hereditary non-polyposis colorectal cancer families, microsatellite instability and germline mutation in one of the DNA mismatch repair genes in clouding MSH2, MLH1, MSH6 and PMS2 are found. The Objective of this study was to determine th...
متن کاملSociety of Gynecologic Oncologists Education Committee statement on risk assessment for inherited gynecologic cancer predispositions.
Women with germline mutations in the cancer susceptibility genes, BRCA1 or BRCA2, associated with Hereditary Breast/Ovarian Cancer syndrome, have up to an 85% lifetime risk of breast cancer and up to a 46% lifetime risk ovarian cancer. Similarly, women with mutations in the DNA mismatch repair genes, MLH1, MSH2 or MSH6, associated with the Lynch/Hereditary Non-Polyposis Colorectal Cancer (HNPCC...
متن کاملSociety of Gynecologic Oncology statement on risk assessment for inherited gynecologic cancer predispositions.
Women with germline mutations in the cancer susceptibility genes, BRCA1 or BRCA2, associated with Hereditary Breast & Ovarian Cancer syndrome, have up to an 85% lifetime risk of breast cancer and up to a 46% lifetime risk of ovarian, tubal, and peritoneal cancers. Similarly, women with mutations in the DNA mismatch repair genes, MLH1, MSH2, MSH6, or PMS2, associated with the Lynch/Hereditary No...
متن کاملWomen with hereditary breast cancer predispositions should avoid using their smartphones, tablets and laptops at night
Breast cancer is the most common malignancy among women, both in the developed and developing countries. Women with mutations in the BRCA1 and BRCA2 genes have an increased risk of breast and ovarian cancers. Recent studies show that short-wavelength visible light disturb the secretion of melatonin and causes circadian rhythm disruption. We have previously studied the health effects of exposure...
متن کاملMolecular Analysis of Microsatellite Instability in Hereditary Non Polyposis Colon Carcinoma Patients from North-East Iran
Background and Objectives: Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant cancer predisposition syndrome caused by germ-line mutations in DNA mismatch repair genes. Tumors arising as a result of these mutations display instability in a sequence area known as microsatellites. Studies have shown that some Bethesda markers (BAT25, BAT26) are more efficient than other...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of medical genetics
دوره 40 8 شماره
صفحات -
تاریخ انتشار 2003